skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Umurhan, Orkan M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A high-resolution fourth-order Padé scheme is used to simulate locally isothermal 3D disk turbulence driven by the vertical shear instability (VSI) using 268.4 M points. In the early nonlinear period of axisymmetric VSI, angular momentum transport by vertical jets creates correlatedN-shaped radial profiles of perturbation vertical and azimuthal velocity. This implies dominance of positive perturbation vertical vorticity layers and a recently discovered angular momentum staircase with respect to radius (r). These features are present in 3D in a weaker form. The 3D flow consists of vertically and azimuthally coherent turbulent shear layers containing small vortices with all three vorticity components active. Previously observed large persistent vortices in the interior of the domain driven by the Rossby wave instability are absent. We speculate that this is due to a weaker angular momentum staircase in 3D in the present simulations compared to a previous simulation. The turbulent viscosity parameterα(r) increases linearly withr. At intermediate resolution, the value ofα(r) at midradius is close to that of a previous simulation. The specific kinetic energy spectrum with respect to radial wavenumber has a power-law region with exponent −1.84, close to the value −2 expected for shear layers. The spectrum with respect to azimuthal wavenumber has a −5/3 region and lacks a −5 region reported in an earlier study. Finally, it is found that axisymmetric VSI has artifacts at late times, including a very strong angular momentum staircase, which in 3D is present weakly in the disk’s upper layers. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract In the theory of protoplanetary disk turbulence, a widely adopted ansatz, or assumption, is that the turnover frequency of the largest turbulent eddy, ΩL, is the local Keplerian frequency ΩK. In terms of the standard dimensionless Shakura–Sunyaevαparameter that quantifies turbulent viscosity or diffusivity, this assumption leads to characteristic length and velocity scales given respectively by α H and α c , in whichHandcare the local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is forced numerically or driven by some natural processes such as vertical shear instability. Here, we explore the more general case where ΩL≥ ΩKand show that, under these conditions, the characteristic length and velocity scales are respectively α / R H and α R c , where R Ω L / Ω K is twice the Rossby number. It follows that α = α ˜ / R , where α ˜ c is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence, and it may help with interpreting recent edge-on disk observations; more general implications for observations are also presented. For R > 1 , the effective particle Stokes numbers are increased, which has implications for particle collision dynamics and growth, as well as for planetesimal formation. 
    more » « less
  3. Abstract We examine the settled particle layers of planet-forming disks in which the streaming instability (SI) is thought to be either weak or inactive. A suite of low-to-moderate-resolution 3D simulations in a 0.2H-sized box, whereHis the pressure scale height, are performed using PENCIL for two Stokes numbers, St = 0.04 and 0.2, at 1% disk metallicity. We find that a complex of Ekman-layer jet flows emerge subject to three co-acting linearly growing processes: (1) the Kelvin–Helmholtz instability (KHI), (2) the planet-forming disk analog of the baroclinic Symmetric Instability (SymI), and (3) a later-time weakly acting secondary transition process, possibly a manifestation of the SI, producing a radially propagating pattern state. For St = 0.2 KHI is dominant and manifests as off-midplane axisymmetric rolls, while for St = 0.04 the axisymmetric SymI mainly drives turbulence. SymI is analytically developed in a model disk flow, predicting that it becomes strongly active when the Richardson number (Ri) of the particle–gas midplane layer transitions below 1, exhibiting growth rates 2 / Ri 2 · Ω , where Ω is the local disk rotation rate. For fairly general situations absent external sources of turbulence it is conjectured that the SI, when and if initiated, emerges out of a turbulent state primarily driven and shaped by at least SymI and/or KHI. We also find that turbulence produced in 2563resolution simulations are not statistically converged and that corresponding 5123simulations may be converged for St = 0.2. Furthermore, we report that our numerical simulations significantly dissipate turbulent kinetic energy on scales less than six to eight grid points. 
    more » « less
  4. Abstract Kuiper Belt objects (KBOs) show an unexpected trend, whereby large bodies have increasingly higher densities, up to five times greater than their smaller counterparts. Current explanations for this trend assume formation at constant composition, with the increasing density resulting from gravitational compaction. However, this scenario poses a timing problem to avoid early melting by decay of26Al. We aim to explain the density trend in the context of streaming instability and pebble accretion. Small pebbles experience lofting into the atmosphere of the disk, being exposed to UV and partially losing their ice via desorption. Conversely, larger pebbles are shielded and remain icier. We use a shearing box model including gas and solids, the latter split into ices and silicate pebbles. Self-gravity is included, allowing dense clumps to collapse into planetesimals. We find that the streaming instability leads to the formation of mostly icy planetesimals, albeit with an unexpected trend that the lighter ones are more silicate-rich than the heavier ones. We feed the resulting planetesimals into a pebble accretion integrator with a continuous size distribution, finding that they undergo drastic changes in composition as they preferentially accrete silicate pebbles. The density and masses of large KBOs are best reproduced if they form between 15 and 22 au. Our solution avoids the timing problem because the first planetesimals are primarily icy and26Al is mostly incorporated in the slow phase of silicate pebble accretion. Our results lend further credibility to the streaming instability and pebble accretion as formation and growth mechanisms. 
    more » « less